Prognostics and Health Management of an Automated Machining Process
Cheng He,
Jiaming Li and
George Vachtsevanos
Mathematical Problems in Engineering, 2015, vol. 2015, 1-10
Abstract:
Machine failure modes are presenting a major burden to the operator, the plant, and the enterprise causing significant downtime, labor cost, and reduced revenue. New technologies are emerging over the past years to monitor the machine’s performance, detect and isolate incipient failures or faults, and take appropriate actions to mitigate such detrimental events. This paper addresses the development and application of novel Prognostics and Health Management (PHM) technologies to a prototype machining process (a screw-tightening machine). The enabling technologies are built upon a series of tasks starting with failure analysis, testing, and data processing aimed to extract useful features or condition indicators from raw data, a symbolic regression modeling framework, and a Bayesian estimation method called particle filtering to predict the feature state estimate accurately. The detection scheme declares the fault of a machine critical component with user specified accuracy or confidence and given false alarm rate while the prediction algorithm estimates accurately the remaining useful life of the failing component. Simulation results support the efficacy of the approach and match well the experimental data.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/651841.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/651841.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:651841
DOI: 10.1155/2015/651841
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().