Application of Discrete Wavelet Transform in Shapelet-Based Classification
Lijuan Yan,
Yanshen Liu and
Yi Liu
Mathematical Problems in Engineering, 2020, vol. 2020, 1-13
Abstract:
Recently, several shapelet-based methods have been proposed for time series classification, which are accomplished by identifying the most discriminating subsequence. However, for time series datasets in some application domains, pattern recognition on the original time series cannot always obtain ideal results. To address this issue, we propose an ensemble algorithm by combining time frequency analysis and shape similarity recognition of time series. Discrete wavelet transform is used to decompose the time series into different components, and the shapelet features are identified for each component. According to the different correlations between each component and the original time series, an ensemble classifier is built by weighted majority voting, and the Monte Carlo method is used to search for optimal weight vector. The comparative experiments and sensitivity analysis are conducted on 25 datasets from UCR Time Series Classification Archive, which is an important open dataset resource in time series mining. The results show the proposed method has a better performance in terms of accuracy and stability than the compared classifiers.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6523872.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6523872.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6523872
DOI: 10.1155/2020/6523872
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().