EconPapers    
Economics at your fingertips  
 

Semi-Supervised Ensemble Classifier with Improved Sparrow Search Algorithm and Its Application in Pulmonary Nodule Detection

Jiangnan Zhang, Kewen Xia, Ziping He, Zhixian Yin and Sijie Wang

Mathematical Problems in Engineering, 2021, vol. 2021, 1-18

Abstract:

The Adaptive Boosting (AdaBoost) classifier is a widely used ensemble learning framework, and it can get good classification results on general datasets. However, it is challenging to apply the AdaBoost classifier directly to pulmonary nodule detection of labeled and unlabeled lung CT images since there are still some drawbacks to ensemble learning method. Therefore, to solve the labeled and unlabeled data classification problem, the semi-supervised AdaBoost classifier using an improved sparrow search algorithm (AdaBoost-ISSA-S4VM) was established. Firstly, AdaBoost classifier is used to construct a strong semi-supervised classifier using several weak classifiers S4VM (AdaBoost-S4VM). Next, in order to solve the accuracy problem of AdaBoost-S4VM, sparrow search algorithm (SSA) is introduced in the AdaBoost classifier and S4VM. Then, sine cosine algorithm and new labor cooperation structure are adopted to increase the global optimal solution and convergence performance of sparrow search algorithm, respectively. Furthermore, based on the improved sparrow search algorithm and adaptive boosting classifier, the AdaBoost-S4VM classifier is improved. Finally, the effective improved AdaBoost-ISSA-S4VM classification model was developed for actual pulmonary nodule detection based on the publicly available LIDC-IDRI database. The experimental results have proved that the established AdaBoost-ISSA-S4VM classification model has good performance on labeled and unlabeled lung CT images.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/6622935.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/6622935.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6622935

DOI: 10.1155/2021/6622935

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6622935