Comprehensive Evaluation of Urban Road Network Resilience Facing Earthquakes
Lin Gao,
Mingzhen Wang,
Anshuang Liu and
Huafeng Gong
Mathematical Problems in Engineering, 2021, vol. 2021, 1-12
Abstract:
The road network’s transport capacity and traffic function will be directly reduced if urban roads are damaged by earthquakes. To effectively improve the resistance and recovery ability of urban road networks facing earthquake disasters, the establishment of an aseismic resilience evaluation method for the urban road network is the research goal. This paper’s novelty introduces the concept of engineering resilience into the aseismic performance evaluation of urban road networks. It reveals the internal influence principle of nodes and independent pathways on the aseismic resilience of the network. This paper’s significant contribution is to establish a reasonable and comprehensive urban road network aseismic resilience evaluation method. This method can realize the calculation of the aseismic resilience for the existing network, reconstruction network, and new network and propose the optimization, transformation, and layout for the network. The MATLAB program for the whole process calculation of aseismic resilience is developed. The overall network’s aseismic resilience is obtained by the sum of the product of the node importance and the average number of the reliable independent pathways.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/6659114.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/6659114.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6659114
DOI: 10.1155/2021/6659114
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().