EconPapers    
Economics at your fingertips  
 

Numerical Study of Axisymmetric Flow and Heat Transfer in a Liquid Film over an Unsteady Radially Stretching Surface

Azeem Shahzad, Uzma Gulistan, Ramzan Ali, Azhar Iqbal, Ali Cemal Benim, Muhammad Kamran, Salah Ud-Din Khan, Shahab Ud-Din Khan and Aamir Farooq

Mathematical Problems in Engineering, 2020, vol. 2020, 1-9

Abstract:

The main emphasis on this paper is to analyze the axisymmetric flow and heat transfer in a liquid film over an unsteady radially stretching surface in the presence of a transverse magnetic field. The similarity transformations are used to reduce the highly nonlinear governing partial differential equations for momentum and energy into a set of ordinary differential equations. A numerical scheme is developed for the reduced nonlinear differential equations for the velocity and temperature fields. The literature survey shows that the present problem of thin film flow over a radially stretching sheet has not been studied before. The features of the flow and heat transfer characteristic for different values of governing parameters such as unsteadiness parameter, Prandtl number, Eckert number, and magnetic parameter are thoroughly examined. This study noticed that, by increasing the magnetic parameter and unsteadiness parameter, film thickness decreases.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6737243.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6737243.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6737243

DOI: 10.1155/2020/6737243

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6737243