An Unprecedented 2-Dimensional Discrete-Time Fractional-Order System and Its Hidden Chaotic Attractors
Amina Aicha Khennaoui,
A. Othman Almatroud,
Adel Ouannas,
M. Mossa Al-sawalha,
Giuseppe Grassi,
Viet-Thanh Pham and
Iqbal M. Batiha
Mathematical Problems in Engineering, 2021, vol. 2021, 1-10
Abstract:
Some endeavors have been recently dedicated to explore the dynamic properties of the fractional-order discrete-time chaotic systems. To date, attention has been mainly focused on fractional-order discrete-time systems with “self-excited attractors.” This paper makes a contribution to the topic of fractional-order discrete-time systems with “hidden attractors” by presenting a new 2-dimensional discrete-time system without equilibrium points. The conceived system possesses an interesting property not explored in the literature so far, i.e., it is characterized, for various fractional-order values, by the coexistence of various kinds of chaotic attractors. Bifurcation diagrams, computation of the largest Lyapunov exponents, phase plots, and the 0-1 test method are reported, with the aim to analyze the dynamics of the system, as well as to highlight the coexistence of chaotic attractors. Finally, an entropy algorithm is used to measure the complexity of the proposed system.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/6768215.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/6768215.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6768215
DOI: 10.1155/2021/6768215
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().