EconPapers    
Economics at your fingertips  
 

Heat and Mass Transfer in Three-Dimensional Flow of an Oldroyd-B Nanofluid with Gyrotactic Micro-Organisms

M. Sulaiman, Aamir Ali and S. Islam

Mathematical Problems in Engineering, 2018, vol. 2018, 1-15

Abstract:

This paper discusses the three-dimensional flow of the gyrotactic bioconvection of an Oldroyd-B nanofluid over a stretching surface. Theory of microorganisms is utilized to stabilize the suspended nanoparticles through bioconvection induced by the effects of buoyancy forces. Analytic solution for the governing nonlinear equations is obtained by using homotopy analysis method (HAM). The effects of involved parameters on velocity, temperature, nanoparticles concentration, and density of motile microorganisms are discussed graphically. The local Nusselt, Sherwood, and motile microorganisms numbers are also analyzed graphically. Several known results have been pointed out as the particular cases of the present analysis. It is found that the non-Newtonian fluid parameters, i.e., relaxation time parameter and retardation time parameter , have opposite effects on the velocity profile. The velocity of the fluid and boundary layer thickness decreases for increasing relaxation time while it decreases for increasing retardation time effects.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/6790420.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/6790420.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6790420

DOI: 10.1155/2018/6790420

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6790420