EconPapers    
Economics at your fingertips  
 

Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning

Anand Singh Rajawat, Pradeep Bedi, S. B. Goyal, Adel R. Alharbi, Amer Aljaedi, Sajjad Shaukat Jamal and Piyush Kumar Shukla

Mathematical Problems in Engineering, 2021, vol. 2021, 1-16

Abstract:

The IoT sensor applications have grown in extreme numbers, generating a large amount of data, and it requires very effective data analysis procedures. However, the different IoT infrastructures and IoT sensor device layers possess protocol limitations in transmitting and receiving messages which generate obstacles in developing the smart IoT sensor applications. This difficulty prohibited existing IoT sensor implementations from adapting to other IoT sensor applications. In this article, we study and analyze how IoT sensor produces data for big data analytics, and it also highlights the existing challenges of intelligent solutions. IoT sensor applications required big data classification and analysis in a Fog computing (FC) environment using computation intelligence (CI). Our proposed Fog big data analysis model (FBDAM) and BPNN analysis model for IoT sensor application using fusion deep learning (FDL) pose new obstacles for potential machine-to-machine communication practices. We have applied our proposed FBDAM on the most significant Fog applications developed on smart city datasets (parking, transportation, security, and sensor IoT dataset) and got improving results. We compared different deep and machine learning algorithms (SVM, SVMG-RBF, BPNN, S3VM, and proposed FDL) on different smart city dataset IoT application environments.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/6876688.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/6876688.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6876688

DOI: 10.1155/2021/6876688

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6876688