EconPapers    
Economics at your fingertips  
 

Operation Energy Consumption Estimation Method of Electric Bus Based on CNN Time Series Prediction

Yan Xing, Yachao Li, Weidong Liu, Wenqing Li, Lingxuan Meng and Min Ye

Mathematical Problems in Engineering, 2022, vol. 2022, 1-12

Abstract: In order to further improve the accuracy of electric bus energy consumption estimation and reduce the complexity of using data, the paper proposes a new method for estimating electric bus energy consumption based on a deep learning approach with a data-driven model. The method can estimate the single-trip energy consumption of an electric bus by employing CNN (convolutional neural network) to time series prediction, which takes into account easily accessible trip data of electric buses, including initial SOC (state of charge), average speed, average temperature. First, we need to convert the raw data into a trip dataset by preprocessing the collected real-world trip data of an electric bus. Then, the single trip of the bus from the original station to the terminal station is considered the basic unit for energy consumption estimation, and the trip data are processed in a quasi-time series. Following that, the trip data were modified so that the subsequent convolutional operations more closely matched the interactions between adjacent trips, and a time series prediction method based on CNN was used instead of the regression analysis methods used in traditional data-driven models. Finally, single-trip operation energy consumption estimation of electric buses is achieved with time series prediction based on CNN, and this method is compared and analysed with the LSTM (long-short term memory) time series prediction method and multivariate nonlinear regression prediction methods in traditional data-driven models. The results show that the energy consumption estimation model for electric buses developed in this paper has a higher prediction accuracy, which can improve by 3.68 percent over the traditional multivariate nonlinear regression prediction method and by 1.32 percent over the LSTM time series prediction method.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2022/6904387.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2022/6904387.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6904387

DOI: 10.1155/2022/6904387

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6904387