One-Degree Aerial Device: Control and Experimental Development
Leonardo Acho,
Pablo Buenestado,
Gisela Pujol-Vázquez and
Javier Moreno-Valenzuela
Mathematical Problems in Engineering, 2024, vol. 2024, 1-9
Abstract:
The ball and beam experimental platform is an unstable nonlinear system widely used as a benchmark control setup for testing different controller approaches, especially for beginners on automatic control to improve their control knowledge skills. In this paper, we innovate it by governing the angular position of the beam with a twin-rotor system. Our experiment consists of a beam that rotates through a pivot, in which two propellers are attached to the ends of this beam. Hence, we have a recent one-degree aerial device, and instead of using a ball, we employ a mass moving on the beam, presenting friction on position to its movements on the beam. Then, the control objective is to regulate the mass position at some predefined zone on the beam, ensuring stability and robustness in front of external perturbations and unmodeled uncertainties. To do so, we define a classical PI controller. To assess closed-loop robustness, a mass was introduced to one propeller to induce perturbation, thereby simulating modeling variations or disturbances. The experimental results prove the goodness of our experimental platform for drone applications.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2024/7118127.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2024/7118127.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:7118127
DOI: 10.1155/2024/7118127
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().