Concrete Cracks Detection Using Convolutional NeuralNetwork Based on Transfer Learning
Chao Su and
Wenjun Wang
Mathematical Problems in Engineering, 2020, vol. 2020, 1-10
Abstract:
Crack plays a critical role in the field of evaluating the quality of concrete structures, which affects the safety, applicability, and durability of the structure. Due to its excellent performance in image processing, the convolutional neural network is becoming the mainstream choice to replace manual crack detection. In this paper, we improve the EfficientNetB0 to realize the detection of concrete surface cracks using the transfer learning method. The model is designed by neural architecture search technology. The weights are pretrained on the ImageNet. Supervised learning uses Adam optimizer to update network parameters. In the testing process, crack images from different locations were used to further test the generalization capability of the model. By comparing the detection results with the MobileNetV2, DenseNet201, and InceptionV3 models, the results show that our model greatly reduces the number of parameters while achieving high accuracy (0.9911) and has good generalization capability. Our model is an efficient detection model, which provides a new option for crack detection in areas with limited computing resources.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/7240129.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/7240129.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:7240129
DOI: 10.1155/2020/7240129
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().