EconPapers    
Economics at your fingertips  
 

BP Neural Network-Based Evaluation Method for Enterprise Comprehensive Performance

Chen Wenjing and Man Fai Leung

Mathematical Problems in Engineering, 2022, vol. 2022, 1-11

Abstract: Comprehensive performance evaluation is an important basis for improving the training effect of enterprise employees and the effective allocation of enterprise resources. Based on AHP and BP neural network theory, this paper constructs a comprehensive performance evaluation method for enterprises, AHP is used to calculate the weight of the index, and then the importance index is screened. The model proposes a conceptual model of comprehensive performance of manufacturing enterprises from the support layer, core layer, and promotion layer and constructs a manufacturing system from horizontal and vertical. The influencing factors of comprehensive performance solve the quantification problem of enterprise comprehensive performance evaluation and have obvious guiding value for the research on the integration mode and path of industrialization and industrialization of regional manufacturing enterprises. In the simulation process, the weight of each index in the evaluation system is first determined by the analytic hierarchy process; then the evaluation index membership score table is established, and fuzzy mathematics is used to calculate the expert’s score, so as to solve the problem caused by the intermediate value. The uncertainty caused by the jump is finally established by the analytic hierarchy process, and the neural network is used to simulate the sample. The experimental results show that by using AHP to collect training samples for neural network evaluation, the comprehensive performance evaluation system has good fitness and achieves the best comprehensive consideration of accuracy and training time when there are 17 hidden layer neurons. The maximum relative error is 1.64%, which is much lower than the general accuracy requirement of 5%, which effectively improves the performance and calculation accuracy of the network.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2022/7308235.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2022/7308235.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:7308235

DOI: 10.1155/2022/7308235

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:7308235