An Empirical Comparison of Multiple Linear Regression and Artificial Neural Network for Concrete Dam Deformation Modelling
Mingjun Li and
Junxing Wang
Mathematical Problems in Engineering, 2019, vol. 2019, 1-13
Abstract:
Deformation predicting models are essential for evaluating the health status of concrete dams. Nevertheless, the application of the conventional multiple linear regression model has been limited due to the particular structure, random loading, and strong nonlinear deformation of concrete dams. Conversely, the artificial neural network (ANN) model shows good adaptability to complex and highly nonlinear behaviors. This paper aims to evaluate the specific performance of the multiple linear regression (MLR) and artificial neural network (ANN) model in characterizing concrete dam deformation under environmental loads. In this study, four models, namely, the multiple linear regression (MLR), stepwise regression (SR), backpropagation (BP) neural network, and extreme learning machine (ELM) model, are employed to simulate dam deformation from two aspects: single measurement point and multiple measurement points, approximately 11 years of historical dam operation records. Results showed that the prediction accuracy of the multipoint model was higher than that of the single point model except the MLR model. Moreover, the prediction accuracy of the ELM model was always higher than the other three models. All discussions would be conducted in conjunction with a gravity dam study.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/7620948.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/7620948.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:7620948
DOI: 10.1155/2019/7620948
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().