EconPapers    
Economics at your fingertips  
 

A Neutrosophic-Based Approach in Data Envelopment Analysis with Undesirable Outputs

Xinna Mao, Zhao Guoxi, Mohammad Fallah and S. A. Edalatpanah

Mathematical Problems in Engineering, 2020, vol. 2020, 1-8

Abstract:

Data Envelopment Analysis is one of the paramount mathematical methods to compute the general performance of organizations, which utilizes similar sources to produce similar outputs. Original DEA schemes involve crisp information of inputs and outputs that may not always be accessible in real-world applications. Nevertheless, in some cases, the values of the data are information with indeterminacy, impreciseness, vagueness, inconsistent, and incompleteness. Furthermore, the conventional DEA models have been originally formulated solely for desirable outputs. However, undesirable outputs may additionally be present in the manufacturing system, which wishes to be minimized. To tackle the mentioned issues and in order to obtain a reliable measurement that keeps original advantage of DEA and considers the influence of undesirable factors under the indeterminate environments, this paper presents a neutrosophic DEA model with undesirable outputs. The recommended technique is based on the aggregation operator and has a simple construction. Finally, an example is given to illustrate the new model and ranking approach in details.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/7626102.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/7626102.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:7626102

DOI: 10.1155/2020/7626102

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:7626102