EconPapers    
Economics at your fingertips  
 

Ship Detention Situation Prediction via Optimized Analytic Hierarchy Process and Naïve Bayes Model

Junjie Fu, Xinqiang Chen, Shubo Wu, Chaojian Shi, Jiansen Zhao and Jiangfeng Xian

Mathematical Problems in Engineering, 2020, vol. 2020, 1-11

Abstract:

Ship detention serves as an obligatory but efficient manner in port state control (PSC) inspection, and accurate ship detention prediction provides early warning information for maritime traffic participants. Previous studies mainly focused on exploiting the relationship between ship factors (i.e., ship age and ship type) and PSC inspection reports. Less attention was paid to identify and predict the correlation between ship fatal deficiency and ship detention event. To address the issue, we propose a novel framework to identify crucial ship deficiency types with an optimized analytic hierarchy process (AHP) model. Then, the Naïve Bayes model is introduced to predict the ship detention probability considering weights of the identified crucial ship deficiency types. Finally, we evaluate our proposed model performance on the empirical PSC inspection dataset. The research findings can help PSC officials easily determine main ship deficiencies, and thus, less time cost is required for implementing the PSC inspection procedure. In that manner, the PSC officials can quickly make ship detention decision and thus enhance maritime traffic safety.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/8147310.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/8147310.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8147310

DOI: 10.1155/2020/8147310

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:8147310