Improved Adaptive Holonic Particle Swarm Optimization
Hao Li,
Hongbin Jin,
Hanzhong Wang and
Yanyan Ma
Mathematical Problems in Engineering, 2019, vol. 2019, 1-22
Abstract:
For the first time , the Holonic Particle Swarm Optimization (HPSO ) algorithm applies multiagent theory about the improvement in the PSO algorithm and achieved good results. In order to further improve the performance of the algorithm, this paper proposes an improved Adaptive Holonic Particle Swarm Optimization (AHPSO) algorithm. Firstly, a brief review of the HPSO algorithm is carried out, and the HPSO algorithm can be further studied in three aspects: grouping strategy, iteration number setting, and state switching discrimination. The HPSO algorithm uses an approximately uniform grouping strategy that is the simplest but does not consider the connections between particles. And if the particles with larger or smaller differences are grouped together in different search stages, the search efficiency will be improved. Therefore, this paper proposes a grouping strategy based on information entropy and system clustering and combines two grouping strategies with corresponding search methods. The performance of the HPSO algorithm depends on the setting of the number of iterations. If it is too small, it is difficult to search for the optimal and it wastes so many computing resources. Therefore, this paper constructs an adaptive termination condition that causes the particles to terminate spontaneously after convergence. The HPSO algorithm only performs a conversion from extensive search to exact search and still has the potential to fall into local optimum. This paper proposes a state switching condition to improve the probability that the algorithm jumps out of the local optimum. Finally, AHPSO and HPSO are compared by using 22 groups of standard test functions. AHPSO is faster in convergence than HPSO, and the number of iterations of AHPSO convergence is employed in HPSO. At this point, there exists a large gap between HPSO and the optimal solution, i.e., AHPSO can have better algorithm efficiency without setting the number of iterations.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/8164083.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/8164083.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8164083
DOI: 10.1155/2019/8164083
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().