Comparing Solutions under Uncertainty in Multiobjective Optimization
Miha Mlakar,
Tea Tušar and
Bogdan Filipič
Mathematical Problems in Engineering, 2014, vol. 2014, 1-10
Abstract:
Due to various reasons the solutions in real-world optimization problems cannot always be exactly evaluated but are sometimes represented with approximated values and confidence intervals. In order to address this issue, the comparison of solutions has to be done differently than for exactly evaluated solutions. In this paper, we define new relations under uncertainty between solutions in multiobjective optimization that are represented with approximated values and confidence intervals. The new relations extend the Pareto dominance relations, can handle constraints, and can be used to compare solutions, both with and without the confidence interval. We also show that by including confidence intervals into the comparisons, the possibility of incorrect comparisons, due to inaccurate approximations, is reduced. Without considering confidence intervals, the comparison of inaccurately approximated solutions can result in the promising solutions being rejected and the worse ones preserved. The effect of new relations in the comparison of solutions in a multiobjective optimization algorithm is also demonstrated.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2014/817964.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2014/817964.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:817964
DOI: 10.1155/2014/817964
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().