A New Chaotic Starling Particle Swarm Optimization Algorithm for Clustering Problems
Lin Wang,
Xiyu Liu,
Minghe Sun,
Jianhua Qu and
Yanmeng Wei
Mathematical Problems in Engineering, 2018, vol. 2018, 1-14
Abstract:
A new method using collective responses of starling birds is developed to enhance the global search performance of standard particle swarm optimization (PSO). The method is named chaotic starling particle swarm optimization (CSPSO). In CSPSO, the inertia weight is adjusted using a nonlinear decreasing approach and the acceleration coefficients are adjusted using a chaotic logistic mapping strategy to avoid prematurity of the search process. A dynamic disturbance term (DDT) is used in velocity updating to enhance convergence of the algorithm. A local search method inspired by the behavior of starling birds utilizing the information of the nearest neighbors is used to determine a new collective position and a new collective velocity for selected particles. Two particle selection methods, Euclidean distance and fitness function, are adopted to ensure the overall convergence of the search process. Experimental results on benchmark function optimization and classic clustering problems verified the effectiveness of this proposed CSPSO algorithm.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/8250480.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/8250480.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8250480
DOI: 10.1155/2018/8250480
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().