Naïve Bayesian Classifier for Selecting Good/Bad Projects during the Early Stage of International Construction Bidding Decisions
Woosik Jang,
Jung Ki Lee,
Jaebum Lee and
Seung Heon Han
Mathematical Problems in Engineering, 2015, vol. 2015, 1-12
Abstract:
Since the 1970s, revenues generated by Korean contractors in international construction have increased rapidly, exceeding USD 70 billion per year in recent years. However, Korean contractors face significant risks from market uncertainty and sensitivity to economic volatility and technical difficulties. As the volatility of these risks threatens project profitability, approximately 15% of bad projects were found to account for 74% of losses from the same international construction sector. Anticipating bad projects via preemptive risk management can better prevent losses so that contractors can enhance the efficiency of bidding decisions during the early stages of a project cycle. In line with these objectives, this paper examines the effect of such factors on the degree of project profitability. The Naïve Bayesian classifier is applied to identify a good project screening tool, which increases practical applicability using binomial variables with limited information that is obtainable in the early stages. The proposed model produced superior classification results that adequately reflect contractor views of risk. It is anticipated that when users apply the proposed model based on their own knowledge and expertise, overall firm profit rates will increase as a result of early abandonment of bad projects as well as the prioritization of good projects before final bidding decisions are made.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/830781.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/830781.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:830781
DOI: 10.1155/2015/830781
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().