Sliding Mode Variable Structure Control for Surface Permanent Magnet Synchronous Motors Based on a Fuzzy Exponential Reaching Law
Lili Mo,
Yongqiang Liu and
Yan Zhang
Mathematical Problems in Engineering, 2019, vol. 2019, 1-14
Abstract:
In order to handle heavy chattering and negative robustness caused by time-varying system parameters and external load disturbance of the speed control system, thereby having high-precision control over surface permanent magnetic synchronous machine (PMSM), this paper combines the advantages of sliding mode variable structure control (SMVSC) and fuzzy control. Firstly, a fuzzy sliding mode variable structure control (FUZZY-SMVSC) method is proposed, based on the vector control foundation framework of surface PMSM (SPMSM). It effectively reduces chattering while keeping sliding mode, according to the fuzzy rules formulated based on fuzzy control principle. Secondly, integral sliding mode surface is used and integration element is introduced into fuzzy control input, thereby reducing the static error of the conventional fuzzy control. Simulation and experimental results show that the proposed fuzzy sliding mode variable structure control reduces chattering by fuzzy reasoning and softening. Also, it still can maintain the strong robustness of sliding mode variable structure and ensures the fine dynamics of the system, against time-varying system parameters and external load disturbance.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/8340956.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/8340956.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8340956
DOI: 10.1155/2019/8340956
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().