Development of an Efficient Hull Form Design Exploration Framework
Shinkyu Jeong and
Hyunyul Kim
Mathematical Problems in Engineering, 2013, vol. 2013, 1-12
Abstract:
A high-efficiency design exploration framework for hull form has been developed. The framework consists of multiobjective shape optimization and design knowledge extraction. In multiobjective shape optimization, a multiobjective genetic algorithm (MOGA) using the response surface methodology is introduced to achieve efficient design space exploration. As a response surface methodology, the Kriging model, which was developed in the field of spatial statistics and geostatistics, is applied. A new surface modification method using shifting method and radial basis function interpolation is also adopted here to represent various hull forms. This method enables both global and local modifications of hull form with fewer design variables. In design knowledge extraction, two data mining techniques—functional analysis of variance (ANOVA) and self-organizing map (SOM)—are applied to acquire useful design knowledge about a hull form. The present framework has been applied to hull form optimization exploring the minimum wave drag configuration under a wide range of speeds. The results show that the present method markedly reduced the design period. From the results of data mining, it is possible to identify the design variables controlling wave drag performances at different speed regions and their corresponding geometric features.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2013/838354.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2013/838354.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:838354
DOI: 10.1155/2013/838354
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().