Equivalent Modeling of DFIG-Based Wind Power Plant Considering Crowbar Protection
Qianlong Zhu,
Ming Ding and
Pingping Han
Mathematical Problems in Engineering, 2016, vol. 2016, 1-16
Abstract:
Crowbar conduction has an impact on the transient characteristics of a doubly fed induction generator (DFIG) in the short-circuit fault condition. But crowbar protection is seldom considered in the aggregation method for equivalent modeling of DFIG-based wind power plants (WPPs). In this paper, the relationship between the growth of postfault rotor current and the amplitude of the terminal voltage dip is studied by analyzing the rotor current characteristics of a DFIG during the fault process. Then, a terminal voltage dip criterion which can identify crowbar conduction is proposed. Considering the different grid connection structures for single DFIG and WPP, the criterion is revised and the crowbar conduction is judged depending on the revised criterion. Furthermore, an aggregation model of the WPP is established based on the division principle of crowbar conduction. Finally, the proposed equivalent WPP is simulated on a DIgSILENT PowerFactory platform and the results are compared with those of the traditional equivalent WPPs and the detailed WPP. The simulation results show the effectiveness of the method for equivalent modeling of DFIG-based WPP when crowbar protection is also taken into account.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/8426492.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/8426492.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8426492
DOI: 10.1155/2016/8426492
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().