Application of Extreme Learning Machine for Predicting Chlorophyll-a Concentration Inartificial Upwelling Processes
Yan Wei,
Haocai Huang,
Bin Chen,
Bofu Zheng and
Yihong Wang
Mathematical Problems in Engineering, 2019, vol. 2019, 1-11
Abstract:
Artificial upwelling, artificially pumping up nutrient-rich ocean waters from deep to surface, is increasingly applied to stimulating phytoplankton activity. As a proxy for the amount of phytoplankton present in the ocean, the concentration of chlorophyll a ( chl-a) may be influenced by water physical factors altered in artificial upwelling processes. However, the accuracy and convenience of measuring chl-a are limited by present technologies and equipment. Our research intends to study the correlations between chl-a concentration and five water physical factors, i.e., salinity, temperature, depth, dissolved oxygen (DO), and pH, possibly affected by artificial upwelling. In this paper, seven models are presented to predict chl-a concentration, respectively. Two of them are based on traditional regression algorithms, i.e., multiple linear regression (MLR) and multivariate quadratic regression (MQR), while five are based on intelligent algorithms, i.e., backpropagation-neural network (BP-NN), extreme learning machine (ELM), genetic algorithm-ELM (GA-ELM), particle swarm optimization-ELM (PSO-ELM), and ant colony optimization-ELM (ACO-ELM). These models provide a quick prediction to study the concentration of chl-a . With the experimental data collected from Xinanjiang Experiment Station in China, the results show that chl-a concentration has a strong correlation with salinity, temperature, DO, and pH in the process of artificial upwelling and PSO-ELM has the best overall prediction ability.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/8719387.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/8719387.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8719387
DOI: 10.1155/2019/8719387
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().