EconPapers    
Economics at your fingertips  
 

Fault Diagnosis of Bearings Based on KJADE and VNWOA-LSSVM Algorithm

Tao Wu, Chang Chun Liu and Cheng He

Mathematical Problems in Engineering, 2019, vol. 2019, 1-19

Abstract:

In order to accurately diagnose the faulty parts of the rolling bearing under different operating conditions, the KJADE (Kernel Function Joint Approximate Diagonalization of Eigenmatrices) algorithm is proposed to reduce the dimensionality of the high-dimensional feature data. Then, the VNWOA (Von Neumann Topology Whale Optimization Algorithm) is used to optimize the LSSVM (Least Squares Support Vector Machine) method to diagnose the fault type of the rolling bearing. The VNWOA algorithm is used to optimize the regularization parameters and kernel parameters of LSSVM. The low-dimensional nonlinear features contained in the multidomain feature set are extracted by KJADE and compared with the results of PCA, LDA, KPCA, and JADE methods. Finally, VNWOA-LSSVM is used to identify bearing faults and compare them with LSSVM, GA-LSSVM, PSO-LSSVM, and WOA-LSSVM. The results show that the recognition rate of fault diagnosis is up to 98.67% by using VNWOA-LSSVM. The method based on KJADE and VNWOA-LSSVM can diagnose and identify fault signals more effectively and has higher classification accuracy.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/8784154.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/8784154.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8784154

DOI: 10.1155/2019/8784154

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:8784154