An Intelligent Forensics Approach for Detecting Patch-Based Image Inpainting
Xinyi Wang,
He Wang and
Shaozhang Niu
Mathematical Problems in Engineering, 2020, vol. 2020, 1-10
Abstract:
Image inpainting algorithms have a wide range of applications, which can be used for object removal in digital images. With the development of semantic level image inpainting technology, this brings great challenges to blind image forensics. In this case, many conventional methods have been proposed which have disadvantages such as high time complexity and low robustness to postprocessing operations. Therefore, this paper proposes a mask regional convolutional neural network (Mask R-CNN) approach for patch-based inpainting detection. According to the current research, many deep learning methods have shown the capacity for segmentation tasks when labeled datasets are available, so we apply a deep neural network to the domain of inpainting forensics. This deep learning model can distinguish and obtain different features between the inpainted and noninpainted regions. To reduce the missed detection areas and improve detection accuracy, we also adjust the sizes of the anchor scales due to the inpainting images and replace the original nonmaximum suppression single threshold with an improved nonmaximum suppression (NMS). The experimental results demonstrate this intelligent method has better detection performance over recent approaches of image inpainting forensics.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/8892989.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/8892989.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8892989
DOI: 10.1155/2020/8892989
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().