EconPapers    
Economics at your fingertips  
 

Emotion Recognition of EEG Signals Based on the Ensemble Learning Method: AdaBoost

Yu Chen, Rui Chang and Jifeng Guo

Mathematical Problems in Engineering, 2021, vol. 2021, 1-12

Abstract:

In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially, electroencephalogram (EEG) signals, has become a popular research topic and attracted wide attention. However, how to extract effective features from EEG signals and accurately recognize them by classifiers have also become an increasingly important task. Therefore, in this paper, we propose an emotion recognition method of EEG signals based on the ensemble learning method, AdaBoost. First, we consider the time domain, time-frequency domain, and nonlinear features related to emotion, extract them from the preprocessed EEG signals, and fuse the features into an eigenvector matrix. Then, the linear discriminant analysis feature selection method is used to reduce the dimensionality of the features. Next, we use the optimized feature sets and train a classifier based on the ensemble learning method, AdaBoost, for binary classification. Finally, the proposed method has been tested in the DEAP data set on four emotional dimensions: valence, arousal, dominance, and liking. The proposed method is proved to be effective in emotion recognition, and the best average accuracy rate can reach up to 88.70% on the dominance dimension. Compared with other existing methods, the performance of the proposed method is significantly improved.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/8896062.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/8896062.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8896062

DOI: 10.1155/2021/8896062

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:8896062