Analytical Investigation of Magnetic Field on Unsteady Boundary Layer Stagnation Point Flow of Water-Based Graphene Oxide-Water and Graphene Oxide-Ethylene Glycol Nanofluid over a Stretching Surface
Ali Rehman and
Zabidin Salleh
Mathematical Problems in Engineering, 2021, vol. 2021, 1-8
Abstract:
This study explains the effect of magnetic field of the stagnation point flow of a water-based nanofluid graphene oxide-water (GO-W) and graphene oxide-ethylene glycol (GO-EG). Heat transfer analyses are discussed by converting the given partial differential equation into a nonlinear ordinary differential equation using the similarity transformation and solved using an approximate analytical method, namely, the optimal homotopy analysis method (OHAM), to obtain an approximate analytical solution of the nonlinear problem that analyzes the problem. The BVPh 2.0 package function of Mathematica is used to obtain the numerical results. The results of important parameters such as the magnetic field parameter, unsteady parameter, stretching parameter, Prandtl number, Eckert number, and kinematic parameter for both velocity and temperature profiles are plotted and discussed. The convergence control parameter of the approximate analytical method is obtained up to the 25th iteration using the BVPh 2.0 package. The skin friction coefficient and Nusselt number are explained in tabular form.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/8897111.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/8897111.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8897111
DOI: 10.1155/2021/8897111
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().