An Analytical Solution for Radiofrequency Ablation with a Cooled Cylindrical Electrode
Ricardo Romero-Méndez and
Enrique Berjano
Mathematical Problems in Engineering, 2017, vol. 2017, 1-12
Abstract:
We present an analytical solution to the electrothermal mathematical model of radiofrequency ablation of biological tissue using a cooled cylindrical electrode. The solution presented here makes use of the method of separation of variables to solve the problem. Green’s functions are used for the handling of nonhomogeneous terms, such as effect of electrical currents circulation and the nonhomogeneous boundary condition due to cooling at the electrode surface. The transcendental equation for determination of eigenvalues of this problem is solved using Newton’s method, and the integrals that appear in the solution of the problem are obtained by Simpson’s rule. The solution obtained here has the possibility of handling different functional dependencies of the source term and nonhomogeneous boundary condition. The solution provides a tool to understand the physics of the problem, as it shows how the solution depends on different parameters, to provide mathematical tools for the design of surgical procedures and to validate other modeling techniques, such as the numerical methods that are frequently used to solve the problem.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2017/9021616.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2017/9021616.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9021616
DOI: 10.1155/2017/9021616
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().