EconPapers    
Economics at your fingertips  
 

Mathematical Extrapolating of Highly Efficient Fin Systems

A.-R. A. Khaled

Mathematical Problems in Engineering, 2011, vol. 2011, 1-18

Abstract:

Different high-performance fins are mathematically analyzed in this work. Initially, three types are considered: (i) exponential, (ii) parabolic, and (iii) triangular fins. Analytical solutions are obtained. Accordingly, the effective thermal efficiency and the effective volumetric heat dissipation rate are calculated. The analytical results were validated against numerical solutions. It is found that the triangular fin has the maximum effective thermal length. In addition, the exponential pin fin is found to have the largest effective thermal efficiency. However, the effective efficiency for the straight one is the maximum when its effective thermal length based on profile area is greater than 1.4. Furthermore, the exponential straight fin is found to have effective volumetric heat dissipation that can be 440% and 580% above the parabolic and triangular straight fins, respectively. In contrast, the exponential pin fin is found to possess effective volumetric heat dissipation that can be 120% and 132% above the parabolic and triangular pin fins, respectively. Finally, new high performance fins are mathematically generated that can have effective volumetric heat dissipation of 24% and 12% above those of exponential pin and straight fins, respectively.

Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2011/909410.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2011/909410.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:909410

DOI: 10.1155/2011/909410

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:909410