EconPapers    
Economics at your fingertips  
 

Two Improved Conjugate Gradient Methods with Application in Compressive Sensing and Motion Control

Min Sun, Jing Liu and Yaru Wang

Mathematical Problems in Engineering, 2020, vol. 2020, 1-11

Abstract:

To solve the monotone equations with convex constraints, a novel multiparameterized conjugate gradient method (MPCGM) is designed and analyzed. This kind of conjugate gradient method is derivative-free and can be viewed as a modified version of the famous Fletcher–Reeves (FR) conjugate gradient method. Under approximate conditions, we show that the proposed method has global convergence property. Furthermore, we generalize the MPCGM to solve unconstrained optimization problem and offer another novel conjugate gradient method (NCGM), which satisfies the sufficient descent property without any line search. Global convergence of the NCGM is also proved. Finally, we report some numerical results to show the efficiency of two novel methods. Specifically, their practical applications in compressive sensing and motion control of robot manipulator are also investigated.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/9175496.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/9175496.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9175496

DOI: 10.1155/2020/9175496

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9175496