EconPapers    
Economics at your fingertips  
 

Wideband Sparse Signal Acquisition Based on Serial Multi-Coset Sampling

Changjian Liu and Houjun Wang

Mathematical Problems in Engineering, 2018, vol. 2018, 1-7

Abstract:

Traditional parallel multi-coset sampling (MCS), which has several sub-Analog-to-Digital-Converters (sub-ADCs) working parallelly, is an attractive sub-Nyquist sampling technique for wideband sparse signals. However, the mismatch among sub-ADCs in traditional parallel MCS, such as bias, gain, and timing skew mismatch, degrades the signal acquisition performance greatly. In this paper, a serial MCS scheme based on clocking single ADC with nonuniform clock is proposed. The nonuniform sampling clock is generated by a pseudo-random binary sequence generator. An additional Sample/Hold (S/H) is used to improve the analog bandwidth of the serial MCS. Moreover, universal sampling pattern is designed for the proposed serial MCS. The sampling pattern design should not only maximize the Kruskal rank of compressed sensing matrix but also take the ADC’s sub-Nyquist sampling rate into consideration. Numeral experiments are presented demonstrating that the mismatch among sub-ADCs in traditional parallel MCS degrades the reconstruction performance greatly, and the proposed serial MCS can avoid the mismatch tactfully.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/9208568.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/9208568.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9208568

DOI: 10.1155/2018/9208568

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9208568