A Compound Structure for Wind Speed Forecasting Using MKLSSVM with Feature Selection and Parameter Optimization
Sizhou Sun,
Jingqi Fu,
Feng Zhu and
Nan Xiong
Mathematical Problems in Engineering, 2018, vol. 2018, 1-21
Abstract:
The aims of this study contribute to a new hybrid model by combining ensemble empirical mode decomposition (EEMD) with multikernel function least square support vector machine (MKLSSVM) optimized by hybrid gravitation search algorithm (HGSA) for short-term wind speed prediction. In the forecasting process, EEMD is adopted to make the original wind speed data decomposed into intrinsic mode functions (IMFs) and one residual firstly. Then, partial autocorrelation function (PACF) is applied to identify the correlation between the corresponding decomposed components. Subsequently, the MKLSSVM using multikernel function of radial basis function (RBF) and polynomial (Poly) kernel function by weight coefficient is exploited as core forecasting engine to make the short-term wind speed prediction. To improve the regression performance, the binary-value GSA (BGSA) in HGSA is utilized as feature selection approach to remove the ineffective candidates and reconstruct the most relevant feature input-matrix for the forecasting engine, while real-value GSA (RGSA) makes the parameter combination optimization of MKLSSVM model. In the end, these respective decomposed subseries forecasting results are combined into the final forecasting values by aggregate calculation. Numerical results and comparable analysis illustrate the excellent performance of the EEMD-HGSA-MKLSSVM model when applied in the short-term wind speed forecasting.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/9287097.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/9287097.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9287097
DOI: 10.1155/2018/9287097
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().