EconPapers    
Economics at your fingertips  
 

Adaptive Control of Electromagnetic Suspension System by HOPF Bifurcation

Aming Hao, Xiaolong Li and Longhua She

Mathematical Problems in Engineering, 2013, vol. 2013, 1-5

Abstract:

EMS-type maglev system is essentially nonlinear and unstable. It is complicated to design a stable controller for maglev system which is under large-scale disturbance and parameter variance. Theory analysis expresses that this phenomenon corresponds to a HOPF bifurcation in mathematical model. An adaptive control law which adjusts the PID control parameters is given in this paper according to HOPF bifurcation theory. Through identification of the levitated mass, the controller adjusts the feedback coefficient to make the system far from the HOPF bifurcation point and maintain the stability of the maglev system. Simulation result indicates that adjusting proportion gain parameter using this method can extend the state stability range of maglev system and avoid the self-excited vibration efficiently.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2013/928719.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2013/928719.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:928719

DOI: 10.1155/2013/928719

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:928719