EconPapers    
Economics at your fingertips  
 

Robust Fault Detection for Permanent-Magnet Synchronous Motor via Adaptive Sliding-Mode Observer

Miaoying Zhang, Fan Xiao, Rui Shao and Zhaojun Deng

Mathematical Problems in Engineering, 2020, vol. 2020, 1-6

Abstract:

In this paper, a robust fault detection problem is investigated for a permanent magnet synchronous motor (PMSM). By using the adaptive control and the sliding-mode control strategies, an observer is presented for estimating the amplitude demagnetization fault problem under inductance disturbance. The proposed method can effectively attenuate the inductance disturbance of the PMSM by the sliding-mode strategy. And the adaptive control estimation algorithm is adopted for guaranteeing that the real-time detection of demagnetization flux can be realized. The convergency is obtained by the Lyapunov stability theory. Finally, simulation is given for demonstrating the feasibility and effectiveness of the proposed method.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/9360939.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/9360939.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9360939

DOI: 10.1155/2020/9360939

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9360939