Detecting Communities in 2-Mode Networks via Fast Nonnegative Matrix Trifactorization
Liu Yang,
Wang Tao,
Ji Xin-sheng,
Liu Caixia and
Xu Mingyan
Mathematical Problems in Engineering, 2015, vol. 2015, 1-10
Abstract:
With the rapid development of the Internet and communication technologies, a large number of multitype relational networks widely emerge in real world applications. The bipartite network is one representative and important kind of complex networks. Detecting community structure in bipartite networks is crucial to obtain a better understanding of the network structures and functions. Traditional nonnegative matrix factorization methods usually focus on homogeneous networks, and they are subject to several problems such as slow convergence and large computation. It is challenging to effectively integrate the network information of multiple dimensions in order to discover the hidden community structure underlying heterogeneous interactions. In this work, we present a novel fast nonnegative matrix trifactorization (F-NMTF) method to cocluster the 2-mode nodes in bipartite networks. By constructing the affinity matrices of 2-mode nodes as manifold regularizations of NMTF, we manage to incorporate the intratype and intratype information of 2-mode nodes to reveal the latent community structure in bipartite networks. Moreover, we decompose the NMTF problem into two subproblems, which are involved with much less matrix multiplications and achieve faster convergence. Experimental results on synthetic and real bipartite networks show that the proposed method improves the slow convergence of NMTF and achieves high accuracy and stability on the results of community detection.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/937090.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/937090.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:937090
DOI: 10.1155/2015/937090
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().