EconPapers    
Economics at your fingertips  
 

Approximate Sparse Regularized Hyperspectral Unmixing

Chengzhi Deng, Yaning Zhang, Shengqian Wang, Shaoquan Zhang, Wei Tian, Zhaoming Wu and Saifeng Hu

Mathematical Problems in Engineering, 2014, vol. 2014, 1-11

Abstract:

Sparse regression based unmixing has been recently proposed to estimate the abundance of materials present in hyperspectral image pixel. In this paper, a novel sparse unmixing optimization model based on approximate sparsity, namely, approximate sparse unmixing (ASU), is firstly proposed to perform the unmixing task for hyperspectral remote sensing imagery. And then, a variable splitting and augmented Lagrangian algorithm is introduced to tackle the optimization problem. In ASU, approximate sparsity is used as a regularizer for sparse unmixing, which is sparser than regularizer and much easier to be solved than regularizer. Three simulated and one real hyperspectral images were used to evaluate the performance of the proposed algorithm in comparison to regularizer. Experimental results demonstrate that the proposed algorithm is more effective and accurate for hyperspectral unmixing than state-of-the-art regularizer.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2014/947453.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2014/947453.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:947453

DOI: 10.1155/2014/947453

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:947453