EconPapers    
Economics at your fingertips  
 

Calculation of Credit Valuation Adjustment Based on Least Square Monte Carlo Methods

Qian Liu

Mathematical Problems in Engineering, 2015, vol. 2015, 1-6

Abstract:

Counterparty credit risk has become one of the highest-profile risks facing participants in the financial markets. Despite this, relatively little is known about how counterparty credit risk is actually priced mathematically. We examine this issue using interest rate swaps. This largely traded financial product allows us to well identify the risk profiles of both institutions and their counterparties. Concretely, Hull-White model for rate and mean-reverting model for default intensity have proven to be in correspondence with the reality and to be well suited for financial institutions. Besides, we find that least square Monte Carlo method is quite efficient in the calculation of credit valuation adjustment (CVA, for short) as it avoids the redundant step to generate inner scenarios. As a result, it accelerates the convergence speed of the CVA estimators. In the second part, we propose a new method to calculate bilateral CVA to avoid double counting in the existing bibliographies, where several copula functions are adopted to describe the dependence of two first to default times.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/959312.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/959312.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:959312

DOI: 10.1155/2015/959312

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:959312