EconPapers    
Economics at your fingertips  
 

Level-of-Service Based Hierarchical Feedback Control Method of Network-Wide Pedestrian Flow

Zhe Zhang, Limin Jia and Yong Qin

Mathematical Problems in Engineering, 2016, vol. 2016, 1-14

Abstract:

Pedestrian flow control is usually used to manage the crowd motion in public facilities to avoid congestion. We propose a network-wide pedestrian flow model based on the modified cell transmission model which describes the link flow as ordinary differential equations. The network flow control model (NFCM) is proposed to limit the number of pedestrians in a network according to the level-of-service requirements; however, the NFCM cannot ensure the uniform link density which is a premise of using NFCM. As a solution, the link flow control model (LFCM) is proposed to adjust the walking speed of pedestrians to realize the uniform link density. The NFCM provides the inputs for the LFCM and the LFCM compensates the deficiency of NFCM. Both NFCM and LFCM control the pedestrian flow in a cooperative way, and thus they form the hierarchical feedback control model (HFCM) of network-wide pedestrian flow. At last, the proposed HFCM is applied to control the crowd of a hall and the comparison of the simulation results in the controlled and uncontrolled scenarios shows that the proposed HFCM has the capability to suggest the optimal link inflows and walking speeds in real time to meet the LOS requirement.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/9617890.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/9617890.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9617890

DOI: 10.1155/2016/9617890

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9617890