A Crack between Orthotropic Materials with a Shear Yield Zone at the Crack Tip
V. Loboda,
I. Gergel,
T. Khodanen and
O. Mykhail
Mathematical Problems in Engineering, 2019, vol. 2019, 1-8
Abstract:
A plane problem for a crack between two anisotropic semi-infinite spaces under remote tensile-shear loading is considered. In the framework of the assumption that the crack faces are free of stresses an exact analytical solution of the problem is given on basis of the complex potentials approach. This solution possesses oscillating square root singularities in stresses and in the derivatives of the displacement jumps at the crack tips. To remove these singularities a new model founded on the introduction of the shear yield zones at the crack tips is suggested. This model is appropriate for the cases where interface adhesive layer is softer than the surrounding matrixes. Under this assumption the problem is reduced to the nonhomogeneous combined Dirichlet-Riemann boundary value problem with the conditions at infinity. An exact analytical solution of this problem is presented for the case of a single yield zone. The length of this zone is found from the finiteness of the shear stress at the end point of the zone. Due to such simulation the shear stress becomes finite at any point and the normal stress possesses only square root singularity at the crack tip. Therefore, the conventional stress intensity factor of the normal stress at the crack tip is used. The numerical illustration of the obtained solution is given.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/9723089.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/9723089.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9723089
DOI: 10.1155/2019/9723089
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().