EconPapers    
Economics at your fingertips  
 

Numerical Analysis and Optimization of Feature Extraction-Oriented English Reading Corpus

Yue Li and Xiantao Jiang

Mathematical Problems in Engineering, 2022, vol. 2022, 1-13

Abstract: English is a universal language in the world. It has become the consensus of society as a subject of education in primary and secondary schools and even universities. Therefore, how to improve English reading ability has also become a focus area of school education and students. The current research on English reading is mainly based on the sense of reading questions, reading patterns, answering skills, etc. and lacks the analysis of English reading corpus. In view of this, this paper used a self-built English reading corpus, adopts the feature extraction method, and combines the convolutional neural network (CNN) to build a model to carry out numerical analysis on the self-built English reading corpus, optimized the model, and compared and analyzed the results obtained. The optimal dropout rate and iteration times were obtained by updating experimental parameters. In order to make the experimental results more convincing, the W2V-SVM and W2V-CNN models that combine different feature extraction and classification methods are designed. Compared with the optimized CNN model, the accuracy rate, recall rate, and F1 value of the optimized CNN model were 89.81%, 92.39%, and 92.8%, respectively. The accuracy, recall, and F1 value of the W2V-SVM model are 81.31%, 82.09%, and 81.25%, respectively. The accuracy, recall, and F1 value of the W2V-CNN model are 85.24%, 84.98%, and 85.12%, respectively. It shows that the optimized CNN feature classification model has better feature classification effect on the self-built English reading corpus. The experimental results meet the expected value.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/2022/9883201.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/2022/9883201.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9883201

DOI: 10.1155/2022/9883201

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9883201