Wavelet Packet Transform-Assisted Least Squares Support Vector Machine for Gear Wear Degree Diagnosis
Hongmin Wang and
Liang Chan
Mathematical Problems in Engineering, 2021, vol. 2021, 1-9
Abstract:
Wear degree detection of gears is an effective way to prevent faults. However, due to the interference of high-speed meshing vibration and environmental noise, the weak vibration signal generated by the gear is easily covered by the noise, which makes it difficult to detect the degree of wear. To address this issue, this paper proposes a novel gear wear degree diagnosis method based on local weighted scatter smoothing method (LOWESS), wavelet packet transform (WPT), and least square support vector machine (APSO-LSSVM) optimized by adaptive particle swarm algorithm. According to the low signal-to-noise ratio characteristic of gear vibration signal, LOWESS is first used to preprocess the signal spectrum. Then, the characteristic parameters used to characterize gear wear are extracted from different decomposition depths by WPT and, finally, combined with APSO-SVM to diagnose the degree of gear wear. Compared with the basic least squares support vector machine, the improved method has better performance in sample classification. The experimental results show that the method in this paper can effectively reduce the diagnosis error caused by background noise, and the diagnosis accuracy reaches 98.33%, which can provide a solution for the health status monitoring of gears.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/9889933.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/9889933.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9889933
DOI: 10.1155/2021/9889933
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().