Correlation Determination between COVID-19 and Weather Parameters Using Time Series Forecasting: A Case Study in Pakistan
Humera Batool,
Lixin Tian and
Bhawani Shankar Chowdhry
Mathematical Problems in Engineering, 2021, vol. 2021, 1-9
Abstract:
Infectious diseases like COVID-19 spread rapidly and have led to substantial economic loss worldwide, including in Pakistan. The effect of weather on COVID-19 spreading needs more detailed examination, as some studies have claimed to mitigate its spread. COVID-19 was declared a pandemic by WHO and has been reported in about 210 countries worldwide, including Asia, Europe, the USA, and North America. Person-to-person contact and international air travel between the nations were the leading causes behind the spreading of SARS-CoV-2 from its point of origin, besides the natural forces. However, further spread and infection within the community or country can be aided by natural elements, such as the weather. Therefore, the correlation between COVID-19 and temperature can be better elucidated in countries like Pakistan, where SARS-CoV-2 has affected at least 0.37 million people. This study collected Pakistan’s COVID-19 infection and mortality data for ten months (March–December 2020). Related weather parameters, temperature, and humidity were also obtained for the same course of time. The collected data were processed and used to compare the performance of various time series prediction models in terms of mean squared error (MSE), root-mean-squared error (RMSE), and mean absolute percentage error (MAPE). This paper, using the time series model, estimates the effect of humidity, temperature, and other weather parameters on COVID-19 transmission by obtaining the correlation among the total infected cases and the number of deaths and weather variables in a particular region. Results depict that weather parameters hold more influence in evaluating the sum number of cases and deaths than other factors like community, age, and the total population. Therefore, temperature and humidity are salient parameters for predicting COVID-19 affected instances. Moreover, it is concluded that the higher the temperature, the lesser the mortality due to COVID-19 infection.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/mpe/9953283.pdf (application/pdf)
http://downloads.hindawi.com/journals/mpe/9953283.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9953283
DOI: 10.1155/2021/9953283
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().