EconPapers    
Economics at your fingertips  
 

A Power Load Forecasting Model Based on FA-CSSA-ELM

Zuoxun Wang, Xinheng Wang, Chunrui Ma and Zengxu Song

Mathematical Problems in Engineering, 2021, vol. 2021, 1-14

Abstract:

Accurate and stable power load forecasting methods are essential for the rational allocation of power resources and grid operation. Due to the nonlinear nature of power loads, it is difficult for a single forecasting method to complete the forecasting task accurately and quickly. In this study, a new combined model for power loads forecasting is proposed. The initial weights and thresholds of the extreme learning machine (ELM) optimized by the chaotic sparrow search algorithm (CSSA) and improved by the firefly algorithm (FA) are used to improve the forecasting performance and achieve accurate forecasting. The early local optimum that exists in the sparrow algorithm is overcome by Tent chaotic mapping. A firefly perturbation strategy is used to improve the global optimization capability of the model. Real values from a power grid in Shandong are used to validate the prediction performance of the proposed FA-CSSA-ELM model. Experiments show that the proposed model produces more accurate forecasting results than other single forecasting models or combined forecasting models.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/9965932.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/9965932.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9965932

DOI: 10.1155/2021/9965932

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9965932