EconPapers    
Economics at your fingertips  
 

Learning from mouse movements: Improving questionnaire and respondents' user experience through passive data collection

Rachel Horwitz, Sarah Brockhaus, Felix Henninger, Pascal Kieslich, Malte Schierholz, Florian Keusch and Frauke Kreuter
Additional contact information
Rachel Horwitz: U.S. Census Bureau
Sarah Brockhaus: LMU München ; Univ. Mannheim
Felix Henninger: Univ. Mannheim
Pascal Kieslich: Univ. Mannheim
Malte Schierholz: Institute for Employment Research (IAB), Nuremberg, Germany ; Univ. Mannheim
Florian Keusch: Univ. Mannheim
Frauke Kreuter: Institute for Employment Research (IAB), Nuremberg, Germany ; Univ. Mannheim ; Univ. of Maryland

No 201734, IAB-Discussion Paper from Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany]

Abstract: "Web surveys have become a standard, and often preferred, mode of survey administration in part because the technology underlying them is much more adaptable. Survey designers often use these technical features to help guide respondents through a survey, by incorporating automated skips, for example. Other features, such as mouse movements, can be used to identify individual respondents that may require attention. Specifically, researchers in a variety of fields have used the total distance traveled, the cursor's trajectory, and specific patterns of movement to measure interest, uncertainty, and respondent difficulty. The current study aims to develop automated procedures for detecting and quantifying difficulty indicators in web surveys. It will use, and build on, indicators that have been identified by prior research. In addition, the current study relies on recent methodological advances in psychology that propose mouse-tracking measures for assessing the tentative commitments to, and conflict between, response alternatives." (Author's abstract, IAB-Doku) ((en))

Keywords: Automatisierung; Befragung; Benutzerforschung; Beobachtung; Datenanalyse; Informationsgewinnung; Internet; Meinungsforschung; online; Antwortverhalten; psychische Faktoren; internetbasierte Datengewinnung; 2016-2016 (search for similar items in EconPapers)
JEL-codes: C83 (search for similar items in EconPapers)
Pages: 25 pages
Date: 2017-12-13
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Published in/as: P. C. Beatty, D. Collins, L. Kaye, J. L. Padilla, G. Willis & A. Wilmot (Eds.) (2020): Advances in questionnaire design, development, evaluation and testing, S. 403-426, doi:10.1002/9781119263685.ch16

Downloads: (external link)
https://doku.iab.de/discussionpapers/2017/dp3417.pdf

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:iab:iabdpa:201734

Access Statistics for this paper

More papers in IAB-Discussion Paper from Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany] Contact information at EDIRC.
Bibliographic data for series maintained by IAB, Geschäftsbereich Wissenschaftliche Fachinformation und Bibliothek ().

 
Page updated 2025-03-19
Handle: RePEc:iab:iabdpa:201734