EconPapers    
Economics at your fingertips  
 

Phenotypical Characterization of a Mutant dea1 With Developmental Defect in Female Inflorescence and Mutantion Impact on Yield in Maize

Fei Zheng, Meijing Zhang, Yiwen Zhen, Jianhua Yuan, Wenming Zhao, Lingjie Kong, Ruixiang Liu, Yakun Cui, Jing Chen, Yanping Chen and Qingchang Meng

Journal of Agricultural Science, 2024, vol. 14, issue 2, 1

Abstract: The establishment of female inflorescence morphology is of great significance to the formation of final maize yield. defective ear1 (dea1) is a novel maize mutant with developmental defect of female inflorescence caused by natural variation. Morphological analysis revealed that the mutant dea1 was characterized as a “scar-like” crack on the adaxial side of the top of the ear, accounting for 28.6-100.0% of the ear length, with an average of 32.4%. The results of scanning electron microscope showed that there was collapse in the formation of paired spikelet primordium at the base of the axillary meristem. Most of investigated botanical and agronomical traits of dea1 were lower than those of wild type, except for ear length and hundred grain weight. The grain yield per ear of mutant dea1 was 35.93% lower than that of wild type, and the width of mutation crack contributed the most to the yield loss per ear. The identification of the mutant dea1 and the characteristically phenotypic analysis provide a theoretical basis for the study of the molecular regulation mechanism of ear development and the application of high-yield breeding in maize.The establishment of female inflorescence morphology is of great significance to the formation of final maize yield. defective ear1 (dea1) is a novel maize mutant with developmental defect of female inflorescence caused by natural variation. Morphological analysis revealed that the mutant dea1 was characterized as a “scar-like” crack on the adaxial side of the top of the ear, accounting for 28.6-100.0% of the ear length, with an average of 32.4%. The results of scanning electron microscope showed that there was collapse in the formation of paired spikelet primordium at the base of the axillary meristem. Most of investigated botanical and agronomical traits of dea1 were lower than those of wild type, except for ear length and hundred grain weight. The grain yield per ear of mutant dea1 was 35.93% lower than that of wild type, and the width of mutation crack contributed the most to the yield loss per ear. The identification of the mutant dea1 and the characteristically phenotypic analysis provide a theoretical basis for the study of the molecular regulation mechanism of ear development and the application of high-yield breeding in maize.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://ccsenet.org/journal/index.php/jas/article/download/0/0/46591/49770 (application/pdf)
https://ccsenet.org/journal/index.php/jas/article/view/0/46591 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ibn:jasjnl:v:14:y:2024:i:2:p:1

Access Statistics for this article

More articles in Journal of Agricultural Science from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().

 
Page updated 2025-03-19
Handle: RePEc:ibn:jasjnl:v:14:y:2024:i:2:p:1