Sampling the Dirichlet Mixture Model with Slices
Stephen G. Walker ()
ICER Working Papers - Applied Mathematics Series from ICER - International Centre for Economic Research
Abstract:
We provide a new approach to the sampling of the well known mixture of Dirichlet process model. Recent attention has focused on retention of the random distribution function in the model, but sampling algorithms have then suffered from the countably infinite representation these distributions have. The key to the algorithm detailed in this paper, which also keeps the random distribution functions, is the introduction of a latent variable which allows a finite number, which is known, of objects to be sampled within each iteration of a Gibbs sampler.
Keywords: Bayesian Nonparametrics; Density estimation; Dirich-let process; Gibbs sampler; Slice sampling. (search for similar items in EconPapers)
Pages: 18 pages
Date: 2006-07
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.bemservizi.unito.it/repec/icr/wp2006/ICERwp16-06.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:icr:wpmath:16-2006
Access Statistics for this paper
More papers in ICER Working Papers - Applied Mathematics Series from ICER - International Centre for Economic Research Corso Unione Sovietica, 218bis - 10134 Torino - Italy. Contact information at EDIRC.
Bibliographic data for series maintained by Daniele Pennesi ().