EconPapers    
Economics at your fingertips  
 

Predicting the likelihood of dividend payment from Indonesian public companies with data mining methods

Raymond Kosala

International Journal of Business Information Systems, 2017, vol. 26, issue 2, 139-150

Abstract: Making decisions about dividend payment is one of the most important choices for public companies. In finance literature, deciding to pay dividends is a controversial subject. Thus, there are several theories on the reason why companies choose to pay dividends. This paper investigates the likelihood of dividend payment from public companies in Indonesia using some artificial intelligence and statistical techniques. In the process, the possibility of using dividend related data from public companies as a dataset for predictive techniques is analysed. Then domain expert knowledge is used from finance literature to determine the predictor variables. Next predictive models are developed for the likelihood of using dividend payments by applying four different methods: logistic regression, artificial neural networks, decision tree induction, and support vector machines. Afterwards, the predictive accuracy performance of the models generated by these methods is examined. Finally, the resulting decision tree model is analysed and the validity of the resulting predictive model is confirmed with a domain expert. Then the resulting model is converted to create simple and understandable if-then rules, which can be used by company management to make decisions on dividend payments in practice. These if-then rules support the lifecycle theory of dividends as exhibited in previous works.

Keywords: dividend policy; dividend policy forecasting; decision support systems; logistic regression; artificial neural networks; decision trees induction; support vector machines. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.inderscience.com/link.php?id=86324 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbisy:v:26:y:2017:i:2:p:139-150

Access Statistics for this article

More articles in International Journal of Business Information Systems from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbisy:v:26:y:2017:i:2:p:139-150