Effective selling strategies for online auctions on eBay: a comprehensive approach with CART model
Yanbin Tu,
Y. Alex Tung and
Paulo Goes
International Journal of Business Information Systems, 2019, vol. 30, issue 2, 125-151
Abstract:
Most existing studies on selling strategies in online auctions do not distinguish auction heterogeneity when providing operational selling recommendations. They also tend to assume single objective for sellers. In this study, we incorporate seller and product heterogeneity into our analytical framework and implement data mining analysis in four auction segments. We use classification and regression tree (CART) to identify the critical factors along with their sequences for auction success and prices. We find different determinants for auction success and ending prices in these four auction segments. The classification and regression trees provide operational choices for sellers to build the most effective selling strategies. We propose that, by using expected auction prices with the classification and regression trees, sellers can integrate auction success and prices as multiple objectives in their selling strategies. Overall, this study contributes to the literature by providing an innovative methodology for effective selling recommendations, which can potentially lead to significant and smooth growth of the online auction market.
Keywords: online auctions; electronic marketplaces; data mining; selling strategies; classification; regression. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=97532 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbisy:v:30:y:2019:i:2:p:125-151
Access Statistics for this article
More articles in International Journal of Business Information Systems from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().