A model to improve recommendation systems based on Spark platform
Manal A. Abdel-Fattah
International Journal of Business Information Systems, 2022, vol. 39, issue 3, 328-348
Abstract:
With the popularity of using the internet, the evolution of technology, the rapid growth of data volume, and applying recommendation systems in diverse life domains, adopting recommendation systems became indispensable. Most of the traditional recommendation systems are built un-oriented of real-time data challenges (such as item cold-start, scalability, heterogeneous data, items change, and users' opinions change), resulting in ineffective, unfulfilling recommendations. Therefore, what is needed is a real-time-based recommendation model that can make the user find what s/he needs without even searching for it; it's like building a model aware of the users' nature and behaviour. This paper aims at building a recommendation model that fulfils the user requirements and overcomes the shortcomings of the traditional recommendation systems. The proposed recommendation model is built on Apache Spark, Apache Kafka and alternative least square (ALS) algorithm, and the model is divided into two parts: recommendation system and real-time analytics dashboard. An e-commerce website is chosen as a case study to apply our model and the results are presented.
Keywords: Apache Spark; Kafka; ALS algorithm; real time; big data; dashboard; recommendation systems; collaborative filtering; recommender systems. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=122360 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbisy:v:39:y:2022:i:3:p:328-348
Access Statistics for this article
More articles in International Journal of Business Information Systems from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().