EconPapers    
Economics at your fingertips  
 

Reservoir computing vs. neural networks in financial forecasting

Spyros P. Georgopoulos, Panagiotis Tziatzios, Stavros G. Stavrinides, Ioannis P. Antoniades and Michael P. Hanias

International Journal of Computational Economics and Econometrics, 2023, vol. 13, issue 1, 1-22

Abstract: Stock market prediction techniques are a major research area, thus, extracting time-dependent patterns for the existing predictive models is of major significance. In this work, we compare forecasting performance of the nonlinear model of recurrent neural networks (RNN) in two implementations, LSTM and CNN-LSTM, to the relatively novel approach of reservoir computing (RC), and in specific, the particular class of the echo state networks (ESN). This comparison focuses on exploiting data latent dynamics, in performing efficient training and high quality predictions of the evolution of real-world financial data. Applying a multivariate scheme to a stock market index without any stationarity techniques, a definite precedence of the ESN-RC over both types of RNN's in computational efficiency as well as prediction quality, emerges. Finally, the implemented approach is friendly to the trader, since specific values of a stock market timeseries provide with a frame allowing for in time forecasting, under real-world circumstances.

Keywords: deep learning; neural networks; reservoir computing; machine learning; time series analysis; financial-economic forecasting; algorithmic comparisons. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=127283 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijcome:v:13:y:2023:i:1:p:1-22

Access Statistics for this article

More articles in International Journal of Computational Economics and Econometrics from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijcome:v:13:y:2023:i:1:p:1-22